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252-0538-00 Shape Modeling and Geometry Processing - Spring 2025 INTERACTIVE GEONETRY LAD

Assignment 4: Mesh Parameterization

Handout date: 28.03.25
Submission deadline: 02.05.2025 at 10:00

In this exercise you will

e Parameterize a mesh by minimizing four different distortion measures,
e with fixed or free boundaries.
e Visualize the distortion by color coding.

The majority of this task involves setting up a sparse linear system and solving it to obtain the uv
coordinates of the parameterization. The specific linear system will depend on the type of parameteri-
zation and desired boundary conditions. To this end, you are provided with a function that computes
the gradient matrices, but you will have to derive the systems, based on the distortion measure, on your
own. The parameterization energies to be implemented in this assignment are:

e Spring energy (uniform Laplacian)

e Dirichlet/harmonic energy (cotangent Laplacian)
e Least Squares Conformal Maps (LSCM)

e As-Rigid-As-Possible (ARAP)

1. SETTING UP THE BOUNDARY CONDITIONS [4 points]

The first task is to define the boundary conditions. There are a few possible options:

e The boundary of the mesh is fixed to a unit disc.

e The boundary is free, but two vertices are fixed based on a strategy.

e The boundary is free, but a few constraints are added to only fix the degrees of freedom of the
parameterization.

1.1. Finding the fixed vertex indices and their positions. In the first two cases, you are required to
find the lists of indices of the fixed vertices and their fixed positions in the plane. For the first (fixed
boundary) option, you can use the libigl functions boundary_loop and map_boundary_to_circle. For
the second option the boundary should not be fixed, however, in order to have a non-singular system
and get a unique solution, certain degrees of freedom must be fixed. Note that this is only relevant
for the LSCM and ARAP parameterization, as the spring and Dirichlet energies can only be used in the
fixed boundary setting. As a first easy solution, you should fix the position of 2 vertices in the uv plane.
Try to explore various possibilities for picking these two vertices as well as their placement and devise a
strategy that will result in nice parameterization (hint: it is often a good practice to pick the two most
distance vertices as the fixed ones in order to avoid self-intersections. To place them reasonably, you
can try to think about which distortion should be minimized overall).

Relevant 1ibigl functions: boundary_loop, map_boundary_to_circle as mentioned and perhaps
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1.2. Fixing only the necessary degrees of freedom. In the free boundary case (for LSCM and ARAP),
always fixing 4 degrees of freedom - two vertices in both u and v direction - could result in suboptimal
results, as the placement of those two points can introduce a lot of distortion. Instead of trying to
place them in a better way, as you tried in the last task, an easier and more elegant approach would
be to reduce only the necessary degrees of freedom to make the system full rank. Thus, you should
think about the minimum number of constraints needed for ARAP and for LSCM in order to make the
system invertible (or in order to make the solution unique). Adapt your code such that you can select
to constrain only these necessary degrees of freedom and get less distorted results. Note that you are
welcome to change the arguments of the following ConvertConstraintsToMatrixForm function to
anything that might be more intuitive for you to use in this setting.

1.3. Convert the boundary conditions to linear constraints. In order to satisfy the boundary con-
ditions, they can be described as a linear system in the following way,

c(g)—d

Implement the function ConvertConstraintsToMatrixForm which converts the lists of fixed vertices
and their positions to a sparse matrix C' and a vector d.

2. WRITE THE PARAMETERIZATION PROBLEM IN MATRIX FORM AND CONSTRUCT THE MATRIX
[10 points]

As was shown in the tutorial, all parameterization methods discussed in this course solve a system of
the form
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The matrix C' and vector d were found in the previous part. In this part you will find the matrix
A and vector b relevant for the specific parameterization method. Pay attention to the dimensions of
the matrices and vector for the following parameterization methods! It will help you with setting up

your system and debugging your code. Initiating each type of parameterization can be done by pressing
'1-'4",

2.1. Uniform and cotangent Laplacian. [2 points]

In this case, A is constructed using the matrix L where L can be either the uniform (spring en-
ergy) or cotangent (Dirichlet energy) Laplacian, and b = 0. You will probably find the functions
igl::adjencency matrix and igl::cotmatrix helpful.

2.2. LSCM. [3 points]

One of the ways to define the LSCM distortion measure is as follows,
D(J) = ||J+J — (tr))I|%



Follow the technique you saw in the tutorial to derive the system required to minimize the LSCM
distortion. You are provided with the function computeSurfaceGradientMatrix, which computes the
gradient matrices D,, D, as shown in class. Don't forget to include the triangle areas!

Sanity check!: it was shown in [2] that the minima of the Dirichlet and LSCM energies are the same
when the boundary is fixed.

Relevant 1ibigl functions: double_area, cat.

2.3. ARAP. [5 points]

The ARAP distortion is defined by
(2) D(J) =|lJ — Rll%

where R is the closest rotation matrix to J. Since R is non linearly dependent on J, this distortion
is not quadratic, and hence cannot be minimized by solving a single linear system. The local/global
approach proposed in [1] is an iterative approach for minimizing the ARAP distortion. Starting from an
initial guess (for example, obtained via LSCM), the idea is to iterate the two following steps:

e Local step: The Jacobians for each face of the current iterate are computed. Then, for each
Jacobian the closest rotation matrix is calculated. This can be done using the SVD of J as
shown in the lecture.

e Global step: Once the closest rotation for each Jacobian is found, they are all assumed to be
fixed, and then (2) can be minimized by solving a linear system.

Calculate the closest rotations as mentioned above (you can use the provided function SSVD2x2 to
help you do so by proving the singular value decomposition), and derive the matrix form of (2). Then
solve the linear system (next part) to obtain a parameterization with lower ARAP distortion. Keep
pressing '4’ to do another iteration of the parameterization and get better result. Stop when there is
no observable improvement. For more details, refer to [1].

3. CONSTRUCT THE SYSTEM AND DISPLAY THE RESULTS [2 points]

3.1. Solve and show the parameterization. Once A, C, b and d are found, construct the system in
(1) and solve it using the Eigen solver Eigen: : SparseLU. Take the relevant part of the solution (i.e.
without the Lagrange multipliers) and store it in global variable UV. You can now see the parameterization
on the left side of the screen, and a checkerboard texture on the mesh (lifted via the parameterization).
Use '+’ and '-' to scale the texture to appropriate size (or use the GUI option to adjust the scale).

3.2. Visualize the distortion. Color code the distortion of the faces to visualize the quality of the
results. Experiment with different criterions (angle preservation, edge length preservation, etc.). Highly
distorted triangles should appear in red and undistorted triangles in white. You can decide yourself on
the exact coloring scale you want to use, but you should opt for something that makes the distortion
clearly visible.



Live demo. During the live demo you are expected to be able to demonstrate:

e The results of the four parameterizations with fixed and free boundaries (when applicable).
e Each of the distortion measures for each of the parameterizations.
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