
252-0538-00 Shape Modeling and Geometry Processing - Spring 2025

Assignment 5: Shape Deformation
Handout date: 02.05.2025

Submission deadline: 23.05.2025 at 10:00

Goal of this exercise

In this exercise, you will implement an algorithm to interactively deform 3D models. You will construct
a two-level multi-resolution surface representation and use naive Laplacian editing to deform it.

Implementation guidelines

A framework is provided for this exercise. The core implementation should be done in Deformation.cpp/h.
Please follow the guidelines below:

• Do not modify the public interface of the provided Deformation class. This means you should
not change the function signatures in Deformation.h, nor should you add or remove any public
functions to the Deformation class.

• You may add private member functions and variables to the Deformation class as you see fit.
• Minimize the change to main.cpp. The changes should be limited to debugging or visualization
purposes only.

We expect the public interface of the Deformation class to perform normally when being called
from a different environment. In addition to the live demo, we may test your Deformation class as a
standalone library.

Disclaimer on Real-time performance. In the following tasks, you will build two sparse linear
systems: one for smoothing the mesh, and one for deforming it. To achieve real-time performance, you
must prefactor the sparse bi-Laplacian matrix appearing in both linear systems. After the user specifies
vertex sets H and F , you can factorize the matrix LωM

−1Lω (using a Cholesky “LLT ” factorization, see
Eigen::SimplicialCholesky) and then re-use the factorization to solve both linear systems efficiently.
Additional subtasks that only need to be computed once (when the handles are selected) should also
not be repeated unnecessarily. This is a mandatory part of the exercise; if your implementation does not
achieve interactive frame-rates (10+ fps) on all provided meshes it will not receive the full score, thus
it is good to keep this in mind from the beginning. As always, compiling in Debug mode will severely
slow down your program, so make sure you explicitly compile in Release mode, for example with cmake

-DCMAKE BUILD TYPE=Release ../.

1. Multiresolution mesh editing [12 points]

For this task, you will compute a mesh deformation based on the rotations and translations applied
interactively to a subset of its vertices via the mouse. Let H be the set of “handle” vertices that the
Olga Sorkine-Hornung April 30, 2025 1



2

user can manipulate (or leave fixed). We want to compute a deformation for the remaining vertices,
denoted as R.

Let S be our input surface, represented as a triangle mesh. We want to compute a new surface that
contains:

• the vertices in H translated/rotated using the user-provided transformation t, and
• the vertices in R properly deformed using the algorithm described next.

The algorithm is divided in three phases (see Figure 1):

• removing high-frequency details,
• deforming the smooth mesh, and
• transferring high-frequency details to the deformed surface.

F
H

R

Figure 1. Algorithm overview

Selecting the handles A minimal, lasso-based interface for selecting vertices has been implemented
for you. To use it, enable the SELECT mouse mode from the menu (or hit ’S’), click somewhere on the
mesh and drag with your mouse to draw a stroke around the area of the mesh you want to select as
a handle. The vertices inside the stroked region are saved in the selected v variable. You have the
options to: (a) accept the selected vertices as a new handle region (only if the vertices are not assigned
to a handle already) by hitting the relevant button on the menu or key ’A’, (b) discard the selection
and make a new one by drawing another stroke somewhere on the mesh. Once a selection is accepted,
you can add additional handles by drawing more strokes.



3

(a) hand
mesh.

(b)
Smoothed
hand.

(c) woody
mesh.

(d)
Smoothed
woody.

Figure 2. Step 1: Removal of high-frequency details.

As selections are accepted, their vertices are saved in the handle vertices variable. We also store
the handle index for each vertex in handle id (-1 if the vertex belongs to no handle). The handle
region centroids are stored in handle centroids.

The selected handles can be transformed by selecting the appropriate mouse mode (TRANSLATE /
ROTATE, shortcuts: ALT+’T’, ALT+’R’) and dragging with the mouse. While handles are dragged, the
updated handle vertex positions are stored in handle vertex positions.

1.1. Removal of high-frequency details. We remove the high-frequency details from the vertices R
in S by minimizing the thin-plate energy, which involves solving a bi-Laplacian system arising from the
quadratic energy minimization:

min
v

vTLωM
−1Lωv

subject to vH = oH ,

where oH are the handle H’s vertex positions, Lω is the cotan Laplacian of S, and M is the mass matrix
of S.
Notice that Lω is the symmetric matrix consisting of the cotangent weights ONLY (without the division

by Voronoi areas). In other words, it evaluates an “integrated” Laplacian rather than an “averaged”
Laplacian when applied to a vector of vertices. The inverse mass matrix appearing in the formula above
then applies the appropriate rescaling so that the Laplacian operator can be applied again (i.e., so that
the Laplacian value computed at each vertex can be interpreted as a piecewise linear scalar field whose
Laplacian can be computed).

This optimization will produce a mesh similar to the one in Figure 2. Note that the part of the surface
that we want to deform is now free of high-frequency details. We call this mesh B.



4

(a)
Deformed/
Smoothed
hand.

(b)
Deformed/
Smoothed
woody.

Figure 3. Step 2: Deformation of the smoothed mesh.

1.2. Deforming the smooth mesh. The new deformed mesh is computed similarly to the previous
step, by solving the minimization:

min
v

vTLωM
−1Lωv

subject to vH = t(oH),

where t(oH) are the new handle vertex positions after applying the user’s transformation. We call this
mesh B′. See Figure 3 for an example.

1.3. Transferring high-frequency details to the deformed surface. The high-frequency details on
the original surface are extracted from S and transferred to B′. We first encode the high-frequency
details of S as displacements w.r.t. B.
We define an orthogonal reference frame on every vertex v of B using:

(1) The unit vertex normal
(2) The normalized projection of one of v’s outgoing edges onto the tangent plane defined by the

vertex normal. A stable choice is the edge whose projection onto the tangent plane is longest.
(3) The cross-product between (1) and (2)

For every vertex v, we compute the displacement vector that takes v from B to S and represent it as
a vector in v’s reference frame.

For every vertex of B′, we also construct a reference frame using the normal and the SAME outgoing
edge we selected for B (not the longest in B′; it is important that the edges used to build both reference
frames are the same). We can now use the displacement vector components computed in the previous
paragraph to define transferred displacement vectors in the new reference frames of B′. See Figure 4
for an example.

Applying the transferred displacements to the vertices of B′ generates the final deformed mesh S ′. See
Figure 5 for an example.



5

(a) Dis-
placements
on B for
hand.

(b) Dis-
placements
on B′ for
hand.

(c) Dis-
placements
on B for
woody.

(d) Dis-
placements
on B′ for
woody.

Figure 4. Step 3: Transfer high-frequency details to the deformed surface.

(a) Final
hand mesh.

(b) Final
woody
mesh.

Figure 5. Step 4: Final Deformation Results.

2. Deformation transfer [4 points]

The high-frequency detail transfer method that you implemented in part 1 of this assignments may
lead to self-intersections when the surface can locally not be properly approximated by a height field. In
this task you will therefore replace the detail transfer from section 1.3 with the “deformation transfer”
method, as explained in sections 3, 5 and 6 of the paper“Deformation Transfer for Detail-Preserving
Surface Editing”, by Botsch et al. 2006. To compute the 3-by-3 source deformation gradient Sj you
should use Equation 15 from the paper using the vertex positions qi and q′

i of the meshes B and B′.

Required discussion of this section:

http://mesh.brown.edu/DGP/pdfs/Botsch-vmv2006.pdf


6

• Discuss and show the differences to the results obtained with the high-frequency detail transfer
from part 1.4 in README.md.

Live demo. During the live demo you are expected to demonstrate:

• The result of interactive multiresolution editing, including the selection of handles on S, the
smoothed mesh B, the deformed smoothed mesh B′ and the deformed mesh S ′.

• The result of interactive deformation transfer, with the deformed mesh.

Important notice: Please carefully read the implementation guidelines at the beginning of this docu-
ment. You will not receive the full score if you fail to follow the guidelines. If your implementation does
not achieve interactive frame-rates (10+ fps) on all provided meshes, it will not receive the full score.
This requirement applies to both parts of the assignment.


	Goal of this exercise
	Implementation guidelines
	1. Multiresolution mesh editing [12 points]
	1.1. Removal of high-frequency details
	1.2. Deforming the smooth mesh
	1.3. Transferring high-frequency details to the deformed surface

	2. Deformation transfer [4 points]
	Live demo


