
252-0538-00 Shape Modeling and Geometry Processing - Spring 2025

Assignment 6: Skinning & Skeletal Animation
Handout date: 16.05.2025

Submission deadline: 13.06.2025 at 10:00

In this exercise, you will implement different methods for skeletal-based deformation. The main tasks
are:

• Implement a handle selection tool to associate mesh vertices to each skeletal bone
• Implement forward kinematics (FK) to extract the transformation of each bone from the input
bone parameters
• Compute the harmonic skinning weights
• Apply skeletal deformation with

– Per-vertex Linear Blend Skinning (LBS)
– Dual Quaternion Skinning (DQS)
– Per-face Blend Skinning with Poisson stitching

• Context-aware skeletal deformation, where multiple example poses are provided to improve the
deformation

Minimalistic template code is provided. The template code contains a few functions (and an
example of how to use them) that you can use in your implementation, but does not provide a code
structure for the solution. You are required to come up with your own. Please note that specifically for
this assignment, the clarity of your code and UI will be taken into account.

1. Overview, Notation, & Background

1.1. Input Data. You are provided with the following data:

• The rest shape of a character (in .obj) S = (V, F ), where V ∈ Rn×3, F ∈ Nm×3

• The rigging (skeleton) of the character containing the bones B =
{
b1, · · · , bK

}
and their

hierarchy P =
{
e1, · · · , eP

}
, where bi ∈ R6 contains the positions of the bone’s head and tail,

and ei = (k, l) ∈ N2 indicates the parent-child relationship between the k-th and l-th bones.
• For each bone bk, we provide a bone handle Hk ⊂ V (in .dmat), i.e., a list of vertices associated
with the bone. Note that the handles are disjoint, but need not cover the entire mesh surface,

i.e., Hi
⋂

Hj = ∅, ∀i ̸= j, and
K⋃
j=1

Hj ̸= V . Note that, you are requested to design your own

solution to select handles for the skeleton. The provided bone handles here are for reference
only.
• Skeleton animation including a set of rotations (in .dmat). Note that all the rotations are
represented in the quaternion format ([x, y, z, w ] order). For each reference frame, a sequence

of rotations P (l) =
{
q̃
(l)
1 , · · · , q̃(l)K

}
is given, where q̃

(l)
k gives the relative rotation of the k-th

bone bk (around the bone head) for the l-th frame. Therefore, the .dmat file you load should be
a RKL×4 matrix, where K is the total number of bones, and L is the total number of frames.

Olga Sorkine-Hornung May 16, 2025 1

https://libigl.github.io/file-formats/dmat/
https://libigl.github.io/file-formats/dmat/


2

The rotations are given following the number of frames first, then the number of bones. It
means that the first K rotations are for the first frame, the following K for the second frame,
and so on.
• World position of the object origin per frame (in .dmat), given as a RL×3 matrix where row l
contains the world position of the object origin for the l-th frame.

Given the deformation of the mesh skeleton (in the form of per-bone transformation R(bk)), we want
to find the per-vertex R(v) or per-face R(f) transformation. Then R(v) or R(f) can help us to update
the vertex positions and lead to a deformed shape S ′ = (V ′, F ).

Useful libigl functions: igl::readTGF and igl::readDMAT. See the corresponding header files to
know how to use them.

1.2. Quaternions. we can use a quaternion q = [x, y, z, w ] ∈ R4×1 to represent a rotation in 3D:
q = w + xi + yj+ zk, where i, j,k are symbols that can be interpreted as unit-vectors pointing along
the three spatial axes. We can rewrite q as q = [ cos θ

2 , sin
θ
2v], encoding a rotation of θ radians about

the unit axis v. More details can be found in this paper [1] or this blog. Quaternion is a double cover
of the rotation group SO(3): each rotation in SO(3) can be represented by two quaternions q and −q.
An intuitive way to understand it is rotating about v by θ and rotating about −v by 2π − θ will give
the same rotation, which corresponds to q and −q.

1.3. SLERP: Spherical linear interpolation. Given two rotations Ra and Rb, how can we interpolate
them to find intermediate rotations? One trivial solution is to interpolate the rotation matrices by
Rt = Ra + t

(
Rb − Ra

)
, t ∈ [ 0, 1 ]. Actually, this is what is used in the linear blend skinning technique

(Sec. 5). However, there is no guarantee that Rt is a rotation matrix.

To address this issue, we can use quaternions to represent the rotations and use SLERP to interpolate
the quaternion directly:

(1) qt = qa
(
q−1
a qb

)t
, t ∈ [ 0, 1 ]

One can easily verify that q0 = qa, q1 = qb and for any t, qt is a quaternion that encodes an intermediate
rotation. We will use SLERP to interpolate skeleton animation (Sec. 3).

1.4. Averaging rotations. Given a set of rotations R1, · · · , Rn and corresponding weights w1, · · ·wn,
how can we compute the average rotation? Slerp works well when n = 2, but during skeletal deformation,
specifically per-face blend skinning with Poisson stitching, we need to average a set of rotations. See
this paper [5] (Equation 12, 13) for a detailed discussion on finding the average rotation under the
Frobenius norm.

1.5. Dual Quaternions. The ordinary quaternion can represent a 3D rotation. We need to use dual
quaternion to represent general transformations that include both rotations and translations. A dual
quaternion can be represented as q = qr + qdϵ, where ϵ is the dual operator, and qr, qd are two ordinary
quaternions. Specifically for a rigid 3D transformation including a rotation q0 (represented as an ordinary
quaternion) and a translation t = (t1, t2, t3), it can equivalently be represented using a dual quaternion
q = q0 +

ϵ
2

(
t1i + t2j + t3k

)
q0. See this paper [3] and Sec.3.2. of this paper [2] for a more detailed

https://libigl.github.io/file-formats/dmat/
https://www.cs.cmu.edu/~spiff/moedit99/expmap.pdf
https://www.3dgep.com/understanding-quaternions/
http://www.acsu.buffalo.edu/%7Ejohnc/ave_quat07.pdf
https://en.wikipedia.org/wiki/Dual_quaternion?oldformat=true
https://en.wikipedia.org/wiki/Dual_quaternion?oldformat=true
https://cs.gmu.edu/~jmlien/teaching/cs451/uploads/Main/dual-quaternion.pdf
https://www.cs.utah.edu/~ladislav/kavan07skinning/kavan07skinning.pdf


3

discussion. We can interpolate the dual quaternions to propagate transformation from the bones to the
mesh vertices (Sec. 6).

1.6. Assignment Overview. The goal of this assignment is to transfer the animation (defined as
transformations w.r.t. the rest pose) from the bones to the corresponding mesh, where we “average”
or “linearly” interpolate a set of transformations and assign it to the mesh. To properly formulate this
problem, we need to clarify the following three key aspects:

• Per-vertex v.s. per-face: are the transformations transferred from bones to the mesh vertices
or mesh faces? For the former case, the transferred transformations can be used to modify vertex
positions and thus get the mesh animation directly. For the latter case, transforming each face
individually can lead to broken mesh and thus a post-processing step called Poisson Stitching is
required to fix the mesh.
• How transformations (especially the rotational part) are represented? As discussed above, there
are different ways to represent the 3D rotations, which can lead to different results after interpolation.
• How to interpolate and average rotations? We can use Lerp (linear interpolation), Nlerp (normal-
ized Lerp), and Slerp (spherical Lerp) to interpolate a set of rotations. Specifically, Lerp is a standard
linear interpolation in the chosen rotation space, which is not guaranteed to be a rigid transformation.
Nlerp can be regarded as projecting the Lerp results into the chosen rotation space (e.g., making it
an orthonormal matrix if SO(3) is chosen, or making it unit length if rotations are represented as
quaternions). Slerp can be regarded as a linear interpolation of the angles, therefore it is independent
of the rotation representations.

To summarize, we can combine different settings to transfer the animations from bones to the mesh.
In this assignment, you are requested to particularly experiment three settings: (1) per-vertex + SO(3)
+ Lerp (see Sec. 5) (2) per-vertex + quaternion representation + Nlerp (see Sec. 6); (3) per-face +
quaternion representation + averaging rotations (see Sec. 7).

2. Rotation representations: Theoretical Questions [3.5 points]

Consult this paper [1] and this paper [3] to understand the different kinds of rotation representations.
You will learn about Euler angles, rotation matrices, quaternions, and axis angle.

Required Output:

(1) A discussion comparing the four aforementioned different approaches. Explain the pros and cons
of each method.

(2) Explain how to switch between these rotation representations: how to go from Euler angles to
rotation matrices, from rotation matrices to quaternions, and from quaternions with a translation
t = (tx, ty, tz) to dual quaternions.

3. Skeletal Animation Visualization [1.5 point]

First, you will visualize the animation of the skeleton.

You are given the set of rotations {R̃(l)
k |

K
k=1} for each frame l. Note that R̃

(l)
k is the relative rotation

around the bone head. We therefore need to recover the absolute rotation R̂
(l)
k and absolute translation

https://www.cs.cmu.edu/~spiff/moedit99/expmap.pdf
https://cs.gmu.edu/~jmlien/teaching/cs451/uploads/Main/dual-quaternion.pdf


4

Figure 1. Skeleton visualization in rest pose and target pose for the hand. Rendered
with the help of libhedra’s line cylinders function.

T
(l)
k ∈ R3×1 w.r.t. the object origin using Forward Kinematics. Then we can get the transformation of

bone bk at the l-th frame as x
(l)
k = R̂

(l)
k xk + T

(l)
k , where xk is a point on the bone bk at the rest pose

(e.g. the bone head/tail). Don’t forget to apply the world transformation (moving the object origin

according to the reference frame) in the end. Visualizing the skeleton graph with positions {x(l)
k |

K
k=1}

for all the frames produces an animation.

Note that you are given a sequence of reference frames, so proper interpolation is required to obtain
a smooth animation. Specify either the target reference frame rate (as a real-valued parameter for finer
control) or the total animation duration, and interpolate between the reference frames (using SLERP) to

align with the specified timing. For example, if you’re given two frames l0 = {q(0)k }, l1 = {q
(1)
k } and the

animation should last T seconds, the interpolated frame at time t would be lt = {SLERP(q(0)k , q
(1)
k , t

T )}.
Required Output: Visualize the animation of the input skeleton (in video or gif) with two differ-

ent durations (see the relevant section in README.md). Useful libigl functions: To visualize the
skeleton, you can either use the provided function in the template to generate a mesh for the skele-
ton, or you can use viewer.data().set edges and viewer.data().set points. Set the option
viewer.data().show overlay depth = false; to make the lines and points always visible (or, if
you generate a mesh for the skeleton you can set the opacity of the other mesh to e.g. 0.5 to make the
skeleton visible).

To produce an animation, you can check the callback function viewer.callback pre draw.

Known bug: macOS does not support fully OpenGL anymore, therefore it is not possible to set edge
line width directly for these OS (OpenGL’s directive glLineWidth does not support values different
from 1.0f). You can use a workaround by outputting cylinders instead. You can use libhedra’s
line cylinders function to generate these cylinders.

https://avaxman.github.io/libhedra/
https://en.wikipedia.org/wiki/Forward_kinematics
https://avaxman.github.io/libhedra/


5

Figure 2. Handle selection

4. Compute Harmonic Skinning Weights [3 points]

To deform the rest shape S to conform to a given skeleton pose, we need to compute skinning weights,
i.e., associating a continuous scalar field wk ∈ Rn×1 for each bone bk. Specifically, each vertex can be
triggered to move by bones. The percentage of the influences from the k-th bone bk is specified by the
skinning weight wk.

We follow [6] (see a more detailed discussion in Sec. 2.2) to compute harmonic skinning weights:
the vertices that ”belong” to the bone handle Hk are assigned the value wk(v) = 1, while vertices
belong to other bone handles are assigned the value wk(v) = 0. All other vertices are assigned values
wk(v) ∈ [0, 1] obtained as discrete harmonic functions over the mesh. Specifically, we can compute
these values for each mesh vertex by solving the Laplace equation:

(2) Lwk = 0 subject to wk(v) = 1 ∀v ∈ Hk, wk(v) = 0 ∀v ∈ Hj where j ̸= k

We can compute such a skinning weight wk for each bone bk, where k = 1, · · · ,K. Note that wk(v) is
defined on mesh vertices v. We can define the skinning weights hk(f) for each triangle f by averaging
the values of wk at the three vertices of f . We will use wk(v) and hk(f) for per-vertex and per-face
blend skinning later.

Sanity Check
∑K

k=1wk(v) = 1 ∀v since w1, · · · , wK are a partition of unity over the mesh.

4.1. First Task - handle selection. To trigger the mesh deformation by its skeleton deformation, we
need to attach to each bone bk a set of vertices v ∈ Hk such that their weight is wk(v) = 1. These
weights act as the Dirichlet boundary conditions (fixed value). In this assignment, we only need to
associate a small set of vertices on the mesh to each bone and compute the harmonic skinning weights
automatically. You are requested to design a method for handle selection and store the bone handle
in Hk for each bone bk. We provide you with an example of handles for reference. Invent your own
solution. Here are two possibilities, but you can come up with a more sophisticated approach:



6

Figure 3. Harmonic weights

• Manual selection: use the Lasso selection tool (see assignment 5) to select handle vertices for
each bone.
• Geometric selection: for each bone, add all the vertices that are closer to the bone than 1.5
times the distance between the bone and the closest vertex of the mesh. You can also create a
cylinder around the bone and include only vertices which are close enough.

Required Output: Visualize the bone handles on the mesh by coloring the mesh vertices according the
bone ID. Show the coloring for 3 different bones. Compare your technique with the provided solution.

4.2. Second task - harmonic skinning weights. Solve the Laplacian equation (2) to compute the
weights wk for the whole mesh.

Required Output Visualize the skinning weight function wk of bones on the input mesh by coloring
the mesh. Show the coloring for 3 different bones.

Useful libigl functions: igl::slice into, igl::slice.

5. Per-vertex Linear Blend Skinning [4 points]

Now we already know the absolute rotation R
(l)
k and translation T

(l)
k of the k-th bones at l-th frame.

We can propagate the transformation from the bones to the mesh vertices using the per-vertex skinning
weight wk we computed:

(3) v
(l)
i =

K∑
k=1

wk(i)
(
R

(l)
k v

(0)
i + T

(l)
k

)
where v

(l)
i is the 3D position of the i-th vertex on the mesh at l-th frame; wk(i) gives the skinning

weight of the k-th bone on the i-th vertex, v
(0)
i is the vertex position on the rest pose. This equation



7

Figure 4. Linear blend skinning

means that we linearly combine the transformation on the bones based on the skinning weights and
apply the new transformation to the vertex to get its new position. Follow this equation to compute the
new position for each vertex and each frame would give us an mesh animation enabled by the skeletal
animation.

Required Output Visualize the animation of the mesh using per-vertex Linear Blend Skinning.

6. Dual Quaternion Skinning [2 points]

Here we try another method to interpolate the transformations among the bones. We first represent

both rotations R
(l)
k and translations T

(l)
k using a dual quaternion q

(l)
k . To get the transformation for

each vertex, we linearly interpolate the dual quaternions based on the skinning weights and normalize
the resulting transformation:

(4) q
(l)
i =

∑K
k=1wk(i)q

(l)
k∥∥∑K

k=1wk(i)q
(l)
k

∥∥
The normalization (known as Nlerp) forces the result of the linear blend to be a unit dual quaternion,
which leads to a rigid transformation on the mesh vertices. However, you should not use the equation
as is, because averaging quaternions on different hemispheres does not go through the geodesic on the
S3. Instead, when adding two quaternions together, you should always check if they are on the same
hemisphere, if not, negate one of them.

Required Output Visualize the animation of the mesh using Dual Quaternion Skinning and compare
it with the previous methods.



8

Useful libigl functions You can use igl::dqs as a starting point. However, igl::dqs does not deal
with the double-cover property and directly using it will lead to artifacts.

7. Per-face Blend Skinning [4 points]

7.1. Per-face Rotation Blend. We can use the per-face skinning weights hk to assign a blended
rotation from the bones to each face. Instead of using linear blend, we use averaging rotations [5] as
discussed in Section 1.4. Specifically, we can compute the average rotation for each face f as:

(5) q̃
(l)
f = argmax

q∈S3
qT

(
K∑
k=1

hk(f)q
(l)
k q

(l)T
k

)
q

where q
(l)
k is the 4× 1 vector representing the quaternion of the absolute rotation of the bone bk at l-th

frame w.r.t the rest pose. After obtaining the per-face rotation q̃
(l)
f for the f -th face, we can apply it

to the face triangle on the rest shape to get its new position in l-th frame. However, since each face
is transformed independently, it is not likely we can get a fully connected mesh. We therefore need to
apply Poisson Stitching to the transformed triangles to get the deformed mesh.

7.2. Poisson Stitching. The idea behind Poisson Stitching is simple: we would like to solve for new

positions for the vertices, such that the deformation gradient agrees with the face transformation q̃
(l)
f

we just computed:

(6) G


v
(l)
1

· · ·

v
(l)
n

 =


R̃

(l)
1

· · ·

R̃
(l)
m


where G ∈ R3m×n is the gradient operator which assigns a constant gradient to each face from a

per-vertex function, v
(l)
i , i = 1, · · · , n is the to-be-solved vertex position for the i-th vertex on l-th

frame, R̃
(l)
f , f = 1, · · · ,m is the face deformation gradient, which is the matrix form of the blended

face rotations q̃
(l)
f in this case.

Since the gradients are translation-invariant, we also add Dirichlet boundary conditions to the vertices

associated with the root bone b1: v
(l)
i = v

(0)
i , ∀i ∈ H1.

Hint This is similar to what you have done for deformation transfer in Assignment 5.

Required Output Visualize the animation of the mesh using per-face LBS. Discuss the different
methods.

8. Using Context from Examples [4 points]

We can further incorporate additional information about the shape’s characteristics from the provided
examples (i.e., the same shape in different poses) to achieve better shape deformation. Specifically, for
the input rest shape S0 =

(
V0, F

)
, we also provide some examples of the same shape in different poses:



9

Sj =
(
Vj , F

)
, j = 1, · · · , J with pose skeleton parameters Pj . Note that these shapes are in the same

triangulation but with different vertex positions to encode different poses.

Overview In the following, we will discuss (1) how to unpose an example shape; (2) how to define the
shape differences between examples and the rest shape; (3) how to assign weights to different examples,
and how to add the displacements extracted from the examples to improve the deformation. Similarly,
we will discuss the per-vertex and per-face setting separately.

8.1. Per-vertex context-aware deformation.

8.1.1. Unposing the example shapes (per-vertex). It is relatively direct to unpose an example shape
to the rest pose when considering per-vertex defined deformations. Specifically, for an example shape
Sj = (Vj , F ) with known vertex positions Vj and pose parameters (rotations) Pj , we can assume its
unposed shape has vertex positions V̄j , which satisfies vj,i = T

(
Pj , wk(i)

)
v̄j,i, where vj,i is the position

of the i-th vertex on the j-th example, and v̄j,i is the to-be-solved position after unposing. One can
easily solve for the new positions via v̄j,i = T−1

(
Pj , wk(i)

)
vj,i.

8.1.2. Extracting deformation nuances from the examples. Now S̄j is directly comparable to the rest
shape S0 since they are in the same pose space with rotations factored out. We then defined the
per-vertex displacements δj,i = v̄j,i − v0,i from the unposed example to the rest shape.

8.1.3. Context-aware deformation. For an arbitrary pose with parameters P , we can compute the new
deformed positions by adding the context from examples to the standard LBS:

(7) vi = T
(
P,wk(i)

)(
v
(0)
i +

J∑
j=1

aj
(
P
)
δj,i

)
where aj

(
P
)
assigns a weight for the j-th example based on how similar the pose P is to the example,

and note that aj is the same for all the vertices. The only question left is how to compute such weight
functions aj(·). It is natural to have the following constraints on aj

(
P
)
:

(1)
∑J

j=1 aj
(
P
)
= 1, as a linear interpolation among the pose space formed by the J examples

(2) ∀j, aj
(
Pj

)
= 1 and , aj

(
Pi

)
= 0 if i ̸= j, which means for a pose P = Pj that has the same

parameter as the provided example, the deformed shape computed from Eq. (7) should be the
same as the provided example.

(3) aj
(
P
)
is continuous in the pose space to produce smooth animation, i.e., aj is a continuous

function w.r.t. P .

To satisfy the continuity constraint, we can express aj using J radial basis functions (RBF)
{
ϕ
(
∥P −

Pj∥
)}J

j=1
, that centered at Pj respectively. Therefore, we can express aj

(
P
)
=

J∑
t=1

cj,tϕ
(
∥P − Pt∥

)
.

The J unknowns cj,t can be easily solved from the J constraints: aj
(
Pj

)
= 1 and , aj

(
Pi

)
= 0 if i ̸= j.



10

To satisfy the sum-to-one constraint, we just need to rescale aj
(
P
)
:

(8) aj
(
P
)
←

aj
(
P
)

J∑
j=1

aj
(
P
) .

See Sec.5.2. in this paper [4] for more discussions. Now for an arbitrary pose P we can compute a
better deformation using the provided examples following Eq. (7).

Required Output (1) Visualize 3 of all the unposed examples S̄j = (V̄j , F ) that you will use; (2)Vi-
sualize the animation using context from examples and compare it to standard LBS.

8.2. (Optional) Per-face context-aware deformation [6]. This section is optional. Its completion
can lead up to two bonus points.

8.2.1. Unposing the example shapes (per-face). We can similarly unpose the provided examples in a
per-face fashion. For each triangle f ∈ F , we can compute a rotation from the rest shape S0 to the
example pose Sj . We then apply the inverse of the rotation to each triangle on the example pose Sj
and use the Poisson Stitching technique (discussed in Sec. 7.2) to get the unposed shape S̄j .

8.2.2. Extracting deformations nuances from examples. Now all the unposed shapes S̄j are in the same
pose as the rest shape S0 where the rotations due to pose have been factored out. We can then
compute the deformation gradient Tj,f , of the f -th face on the j-th unposed example S̄j w.r.t. the
rest shape S0. The full representation of the characteristic behavior present in the j-th example Sj is
the provided skeleton pose Pj and computed relative transformations

{
Tj,1, · · · , Tj,m

}
. You can regard

Tj,f as ”displacement” (represented by a transformation) defined on faces, in a similar way to δj,v the
”displacement” (represented by a displacement vector) defined on vertices as introduced in Sec. 8.1.2.

8.2.3. Context-aware deformation. Similarly to what is discussed in Sec. 8.1.3, we would like to use
the face ”displacements”, Tj,f , to improve the deformations. The key difference is that the vertex
”displacements” δj,i are used to modify the deformed vertex positions directly, but now we would like
to use Tj,f to modify the face transformations R(f). A direct solution is:

(9) R(f)′ = R(f)

J∑
j=1

aj
(
P
)
Tj,f

where R(f) is the standard per-face LBS as discussed in Sec. 7, aj
(
P
)
is similar weight function as

computed in Sec. 8.1.3.

As discussed in Sec.2.2. in this paper [6], the linear blend of Tj,f may lead to visual artifacts since
it might contain rotational components. Therefore, [6] proposes to decompose Tj,f = Qj,fSj,f into a
rotational part Qj,f and a skew component Sj,f , leading to a better modification:

(10) R(f)′ = R(f)
(
⊕J

j=1 aj
(
P
)
Qj,f

)( J∑
j=1

aj
(
P
)
Sj,f

)
where ⊕ represents a linear combination of the rotations in log-quaternion space (see Eq. (5)).

https://dl.acm.org/doi/pdf/10.1145/1028523.1028571
https://igl.ethz.ch/projects/skinning/context-aware-deformation/context-aware-skinning-def.pdf


11

With the improved per-face transformations R(f) based on the context from the examples, we can
apply the Poisson Stitching to the transformed faces to get the final deformed shapes.

Required Output (1) Visualize all the unposed examples S̄j = (V̄j , F ); (2) Visualize the animation
using context from examples using Eq. (9); (3) Visualize the animation using context from examples
using Eq. (10); (4) Analyze the results between using Eq. (9) and using Eq. (10), and compare the
per-face context deformation to the per-vertex context deformation.

References

[1] F Sebastian Grassia. Practical parameterization of rotations using the exponential map. Journal of graphics tools,
3(3):29–48, 1998.

[2] Ladislav Kavan, Steven Collins, Jǐŕı Žára, and Carol O’Sullivan. Skinning with dual quaternions. In Proceedings of the
2007 symposium on Interactive 3D graphics and games, pages 39–46, 2007.

[3] Ben Kenwright. A beginners guide to dual-quaternions: what they are, how they work, and how to use them for 3d
character hierarchies. 2012.

[4] Tsuneya Kurihara and Natsuki Miyata. Modeling deformable human hands from medical images. In Proceedings of the
2004 ACM SIGGRAPH/Eurographics symposium on Computer animation, pages 355–363, 2004.

[5] F Landis Markley, Yang Cheng, John L Crassidis, and Yaakov Oshman. Averaging quaternions. Journal of Guidance,
Control, and Dynamics, 30(4):1193–1197, 2007.

[6] Ofir Weber, Olga Sorkine, Yaron Lipman, and Craig Gotsman. Context-aware skeletal shape deformation. In Computer
Graphics Forum, volume 26, pages 265–274. Wiley Online Library, 2007.


	1. Overview, Notation, & Background
	1.1. Input Data
	1.2. Quaternions
	1.3. SLERP: Spherical linear interpolation
	1.4. Averaging rotations.
	1.5. Dual Quaternions
	1.6. Assignment Overview

	2. Rotation representations: Theoretical Questions [3.5 points]
	3. Skeletal Animation Visualization [1.5 point]
	4. Compute Harmonic Skinning Weights [3 points]
	4.1. First Task - handle selection
	4.2. Second task - harmonic skinning weights

	5. Per-vertex Linear Blend Skinning [4 points]
	6. Dual Quaternion Skinning [2 points]
	7. Per-face Blend Skinning [4 points]
	7.1. Per-face Rotation Blend
	7.2. Poisson Stitching

	8. Using Context from Examples [4 points]
	8.1. Per-vertex context-aware deformation
	8.2. (Optional) Per-face context-aware deformation weber2007context

	References

