
Shape Modeling and Geometry Processing
Exercise 5 - Shape Deformation

Annika Oehri May 9, 2025

This exercise

2May 9, 2025

• Topic: Shape Deformation

• Deadline: Friday, 23.05.2025, 10:00

Algorithm Overview

4

1. Select handle regions

2. Smoothing with handle regions fixed

3. Encode high-frequency information as local displacements

4. Deform the smoothed shape (by manipulating the handles)

5. Add local (high-freq) details back to the deformed shape

May 9, 2025

Algorithm Overview

5May 9, 2025

Step 1: Select Handle Regions

Mesh

6

𝐇2

𝐇1

• Select with mouse or load from file

• Move one handle at a time by

clicking and dragging

• Rest of the handles stay fixed

• Code provided

May 9, 2025

Step 2: Smoothing

7

• Remove high-frequency details

with handles fixed

• Initially only the smoothed mesh

will be deformed, and the details

will be transferred later

• Solve a bi-Laplacian system

• solution minimizes the Laplacian

Energy

Mesh

𝐇2

𝐇1

min
𝑣

𝑣𝑇𝐿𝜔𝑀−1𝐿𝜔𝑣

𝑠. 𝑡. 𝑣𝐻𝑖
= 𝑜𝐻𝑖

 Original positions on 𝑺

May 9, 2025

Step 3: Encode Displacements

8

𝐇2

𝐇1 Mesh

Per-vertex displacement from 𝑩

to 𝑺

•𝒅𝒊 = 𝒗𝒊
𝑺 − 𝒗𝒊

𝑩

•𝒅𝒊 represent the high frequency

details

•will be added back after

deformation

May 9, 2025

9

Step 3: Encode Displacements

Mesh

𝐇2

𝐇1

Represent 𝒅𝒊 in a local frame

𝒅𝒊

May 9, 2025

1
0

Step 3: Encode Displacements

Mesh

𝐇2

𝐇1

Represent 𝒅𝒊 in a local frame

𝒅𝒊

𝒏𝒊

𝒙𝒊?
𝒚𝒊?

May 9, 2025

1
1

Step 3: Encode Displacements

Represent 𝒅𝒊 in a local frame

• Compute the normal 𝒏𝒊 and tangent

plane at the vertex 𝒗𝒊 𝒏𝒊

May 9, 2025

12

Step 3: Encode Displacements

Represent 𝒅𝒊 in a local frame

• Compute the normal 𝒏𝒊 and tangent

plane at the vertex 𝒗𝒊

• Project all neighboring vertices on

the tangent plane

𝒏𝒊

May 9, 2025

13

Step 3: Encode Displacements

Represent 𝒅𝒊 in a local frame

• Compute the normal 𝒏𝒊 and tangent

plane at the vertex 𝒗𝒊

• Project all neighboring vertices on

the tangent plane

• Find the longest projected edge,

normalize it and set it as 𝒙𝒊

𝒏𝒊

𝒙𝒊

May 9, 2025

14

Step 3: Encode Displacements

Represent 𝒅𝒊 in a local frame

• Compute the normal 𝒏𝒊 and tangent

plane at the vertex 𝒗𝒊

• Project all neighboring vertices on

the tangent plane

• Find the longest projected edge,

normalize it and set it as 𝒙𝒊

• Compute 𝒚𝒊 = 𝒏𝒊 × 𝒙𝒊

𝒏𝒊

𝒙𝒊

𝒚𝒊

Save the edge index!

May 9, 2025

15

Step 3: Encode Displacements

Mesh

𝐇2

𝐇1

Represent 𝒅𝒊 in a local frame

𝒅𝒊 = 𝒅𝒊
𝒙𝒙𝒊 + 𝒅𝒊

𝒚
𝒚𝒊 + 𝒅𝒊

𝒏𝒏𝒊

𝒅𝒊

𝒏𝒊

𝒙𝒊

𝒚𝒊

Change of basis☺

May 9, 2025

16

Step 4: Deform

Mesh

𝐇2

𝐇1

Deform the mesh by manipulating the

handles

• Solve for the deformed shapes 𝑩′
• Solve similar bi-Laplacian system but

with fixed new handle positions

min
𝑣

𝑣𝑇𝐿𝜔𝑀−1𝐿𝜔𝑣

𝑠. 𝑡. 𝑣𝐻𝑖
= 𝑜𝐻𝑖

New positions after deformation

May 9, 2025

17

Step 4: Deform

Mesh

𝐇2

𝐇1

Where does this system come from?
Usually, we try to minimize some energy in deformation

(comparable to the distortion energies in

parameterization). Ours could be something like this:

Laplacian after deformation

𝐸 = ෍

𝑣∈𝑉

𝐴𝑣 𝑙𝑣 − 𝑙′𝑣
2

+ fulfill handle constraints
→get bi-Laplacian after derivative to

minimize energy

Original laplacian

May 9, 2025

18

𝐇1

𝐇2

Step 5: Add local detail

Mesh B’

Compute the local frame on 𝑩′
•Calculate normal 𝒏𝒊

′

•Use the same edge as before but

on 𝑩′ to define 𝒙𝒊
′

•Compute 𝒚𝒊
′ = 𝒏𝒊

′ × 𝒙𝒊
′

Use the new local frame to

compute

𝒅𝒊
′ = 𝒅𝒊

𝒙𝒙𝒊
′ + 𝒅𝒊

𝒚
𝒚𝒊

′ + 𝒅𝒊
𝒏𝒏𝒊

′

May 9, 2025

Step 5: Add local detail

19

𝐇1

𝐇2

Mesh
Add local detail to 𝑩′ to get

the deformed shape:

𝑺′ = 𝑩′ + 𝒅′

May 9, 2025

How to solve a constrained system

20

• Positions are imposed as hard constraints

• could be done using Lagrange multipliers (similar to

assignment 4)

• but in this assignment, we will use substitution
(Disclaimer: these two approaches do not yield exactly the same results, but for our

intents and purposes we can ignore this subtle difference)

min
𝑣

𝑣𝑇𝐿𝜔𝑀−1𝐿𝜔𝑣

𝑠. 𝑡. 𝑣𝐻𝑖
= 𝑜𝐻𝑖

May 9, 2025

#

Substitution example

●

1 1 1
1 2 3
0 1 2

𝑥
3
𝑦

=
3
7

10

21

● Rough idea can be easily seen by small

example:

●

1𝑥 + 1𝑦
1𝑥 + 3𝑦
0𝑥 + 2𝑦

=
3 − 3
7 − 6

10 − 3

+ Additionally, you ignore

the constrained row

(here, the second)

May 9, 2025

Constrained solving through substitution

22

min
𝑣

𝑣𝑇𝐿𝜔𝑀−1𝐿𝜔𝑣

𝑠. 𝑡. 𝑣𝐻𝑖
= 𝑜𝐻𝑖

𝐴 = 𝐋𝜔𝐌−1𝐋𝜔 =
𝐴𝑓𝑓 𝐴𝑓𝑐

𝐴𝑐𝑓 𝐴𝑐𝑐

𝐴𝑓𝑓 𝐴𝑓𝑐
𝑣𝑓

𝑣𝑐
= 0 ⇒ 𝐴𝑓𝑓𝑣𝑓 = −𝐴𝑓𝑐𝑣𝑐

To do this reshuffling,

igl::slice and

igl::slice_into might

become your best

friend!

May 9, 2025

Pre-factoring the bi-Laplacian

• Factorization is the bottleneck of the solve → O(n^3)!

• Prefactorization is crucial to achieve real-time

performance

• Should only be performed when a new handle is defined

//PickingPlugin.h
Eigen::SimplicialCholesky<SparseMatrixType, Eigen::RowMajor > solver;
solver.compute (BiLaplacian_ff); // the interior part of the (almost) bi-laplacian

23May 9, 2025

Deformation Transfer

paper

• Recall Multi-resolution:

• 𝑆 = 𝐵 + 𝑑: base + details

• 𝐵 → 𝐵′: deform base shape

• 𝑆′ = 𝐵′ + 𝑑′: add rotation-invariant displacement back

• Deformation transfer:

• 𝐵 → 𝐵′: already encodes the deformation

• Solve for 𝑆′ such that “the deformation from 𝑆 to 𝑆′” is
equivalent to “the deformation from 𝐵 to 𝐵′” (Eq. (14)
in the paper)

24May 9, 2025

https://lgg.epfl.ch/publications/2006/botsch_2006_DTD.pdf

Provided Code

• Enables basic picking and dragging of handles

• You will fill it in with your deformation code in
Deformation class (deformation.cpp/h)

• Shortcuts:

• ’S’: select

• ’A’: accept selection

• ALT+’T’: translation, ALT+‘R’: rotation

25May 9, 2025

Implementation Guidelines

26

Deformation.h

• No modification on the
signature of any public
member is allowed

• Minimize changes to
main.cpp

• Changes on private
members are allowed

May 9, 2025

Implementation Guidelines

27

Efficiency test example

• Why?

• Your implementation’s
efficiency (and/or
correctness) will be tested
offline

May 9, 2025

Provided Code

//for saving constrained vertices
//vertex-to-handle index, #Vx1 (-1 if vertex is free)
Eigen::VectorXi handle_id(0,1);
//list of all vertices belonging to handles, #HV x1
Eigen::VectorXi handle_vertices(0,1);
//centroids of handle regions, #H x1 Eigen::MatrixXd
handle_centroids(0,3);
//updated positions of handle vertices, #HV x3
Eigen::MatrixXd handle_vertex_positions(0,3);

//index of handle being moved int moving_handle = -1;

//rotation and translation for the handle being moved
Eigen::Vector3f translation(0,0,0);
Eigen::Vector4f rotation(0,0,0,1.);

28

• Picking infrastructure

May 9, 2025

Provided Code

• While handle is being dragged

• Replace solve() with your code

void get_new_handle_locations()

updates all handle vertex positions
based on rotation and translation

stores them in
handle_vertex_positions

bool solve(igl::Viewer& viewer, bool update_constraints)
{
igl::slice_into(handle_vertex_positions, handle_vertices, 1, V);

/* etc. update variables*/ return true;
};

29

• Turn on for easier debugging #define UPDATE_ONLY_ON_UP

Must be OFF during

demo (want to see

deformation while
mouse moves)

May 9, 2025

Questions?

29

Thank you!

May 9, 2025

	Slide 1
	Slide 2
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Substitution example
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

