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This exercise
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• Topic: Shape Deformation

• Deadline: Friday, 23.05.2025, 10:00



Algorithm Overview

# 4

1. Select handle regions

2. Smoothing with handle regions fixed

3. Encode high-frequency information as local displacements

4. Deform the smoothed shape (by manipulating the handles)

5. Add local (high-freq) details back to the deformed shape
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Algorithm Overview

# 5May 9, 2025



Step 1: Select Handle Regions

Mesh 
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𝐇2

𝐇1

• Select with mouse or load from file

• Move one handle at a time by 

clicking and dragging

• Rest of the handles stay fixed

• Code provided
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Step 2: Smoothing
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• Remove high-frequency details 

with handles fixed

• Initially only the smoothed mesh 

will be deformed, and the details 

will be transferred later

• Solve a bi-Laplacian system

• solution minimizes the Laplacian 

Energy

Mesh 

𝐇2

𝐇1

min
𝑣

𝑣𝑇𝐿𝜔𝑀−1𝐿𝜔𝑣

𝑠. 𝑡.  𝑣𝐻𝑖
= 𝑜𝐻𝑖

 Original positions on 𝑺
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Step 3: Encode Displacements
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𝐇2

𝐇1 Mesh 

Per-vertex displacement from 𝑩 

to 𝑺

•𝒅𝒊 = 𝒗𝒊
𝑺 − 𝒗𝒊

𝑩

•𝒅𝒊 represent the high frequency 

details

•will be added back after 

deformation
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Step 3: Encode Displacements

Mesh 

𝐇2

𝐇1

Represent 𝒅𝒊 in a local frame 

𝒅𝒊
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# 1
0

Step 3: Encode Displacements

Mesh 

𝐇2

𝐇1

Represent 𝒅𝒊 in a local frame 

𝒅𝒊

𝒏𝒊

𝒙𝒊?
𝒚𝒊?
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# 1
1

Step 3: Encode Displacements

Represent 𝒅𝒊 in a local frame

• Compute the normal 𝒏𝒊 and tangent 

plane at the vertex 𝒗𝒊 𝒏𝒊
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Step 3: Encode Displacements

Represent 𝒅𝒊 in a local frame

• Compute the normal 𝒏𝒊 and tangent 

plane at the vertex 𝒗𝒊 

• Project all neighboring vertices on 

the tangent plane

𝒏𝒊
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Step 3: Encode Displacements

Represent 𝒅𝒊 in a local frame

• Compute the normal 𝒏𝒊 and tangent 

plane at the vertex 𝒗𝒊 

• Project all neighboring vertices on 

the tangent plane

• Find the longest projected edge, 

normalize it and set it as 𝒙𝒊

𝒏𝒊

𝒙𝒊
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Step 3: Encode Displacements

Represent 𝒅𝒊 in a local frame

• Compute the normal 𝒏𝒊 and tangent 

plane at the vertex 𝒗𝒊 

• Project all neighboring vertices on 

the tangent plane

• Find the longest projected edge, 

normalize it and set it as 𝒙𝒊

• Compute 𝒚𝒊 = 𝒏𝒊 × 𝒙𝒊

𝒏𝒊

𝒙𝒊

𝒚𝒊

Save the edge index!
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Step 3: Encode Displacements

Mesh 

𝐇2

𝐇1

Represent 𝒅𝒊 in a local frame

𝒅𝒊 = 𝒅𝒊
𝒙𝒙𝒊 + 𝒅𝒊

𝒚
𝒚𝒊 + 𝒅𝒊

𝒏𝒏𝒊 

𝒅𝒊

𝒏𝒊

𝒙𝒊

𝒚𝒊

Change of basis☺
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Step 4: Deform

Mesh 

𝐇2

𝐇1

Deform the mesh by manipulating the 

handles

• Solve for the deformed shapes 𝑩′
• Solve similar bi-Laplacian system but 

with fixed new handle positions

min
𝑣

𝑣𝑇𝐿𝜔𝑀−1𝐿𝜔𝑣

𝑠. 𝑡.  𝑣𝐻𝑖
= 𝑜𝐻𝑖

 

New positions after deformation
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Step 4: Deform

Mesh 

𝐇2

𝐇1

Where does this system come from?
Usually, we try to minimize some energy in deformation 

(comparable to the distortion energies in 

parameterization). Ours could be something like this:

Laplacian after deformation

𝐸 = ෍

𝑣∈𝑉

𝐴𝑣 𝑙𝑣 − 𝑙′𝑣
2

+ fulfill handle constraints 
→get bi-Laplacian after derivative to 

minimize energy

Original laplacian
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𝐇1

𝐇2

Step 5: Add local detail

Mesh B’ 

Compute the local frame on 𝑩′
•Calculate normal 𝒏𝒊

′ 

•Use the same edge as before but 

on 𝑩′ to define 𝒙𝒊
′

•Compute 𝒚𝒊
′ = 𝒏𝒊

′ × 𝒙𝒊
′

Use the new local frame to 

compute

𝒅𝒊
′ = 𝒅𝒊

𝒙𝒙𝒊
′ + 𝒅𝒊

𝒚
𝒚𝒊

′ + 𝒅𝒊
𝒏𝒏𝒊

′
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Step 5: Add local detail
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𝐇1

𝐇2

Mesh 
Add local detail to 𝑩′ to get 

the deformed shape:

𝑺′ = 𝑩′ + 𝒅′
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How to solve a constrained system
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• Positions are imposed as hard constraints

• could be done using Lagrange multipliers (similar to 

assignment 4) 

• but in this assignment, we will use substitution
(Disclaimer: these two approaches do not yield exactly the same results, but for our 

intents and purposes we can ignore this subtle difference)

min
𝑣

𝑣𝑇𝐿𝜔𝑀−1𝐿𝜔𝑣

𝑠. 𝑡.  𝑣𝐻𝑖
= 𝑜𝐻𝑖
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Substitution example

●

1 1 1
1 2 3
0 1 2

𝑥
3
𝑦

=
3
7

10
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● Rough idea can be easily seen by small 

example:

●

1𝑥 + 1𝑦
1𝑥 + 3𝑦
0𝑥 + 2𝑦

=
3 − 3
7 − 6

10 − 3

+ Additionally, you ignore 

the constrained row 

(here, the second)
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Constrained solving through substitution
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min
𝑣

𝑣𝑇𝐿𝜔𝑀−1𝐿𝜔𝑣

𝑠. 𝑡.  𝑣𝐻𝑖
= 𝑜𝐻𝑖

 

𝐴 = 𝐋𝜔𝐌−1𝐋𝜔 =
𝐴𝑓𝑓 𝐴𝑓𝑐

𝐴𝑐𝑓 𝐴𝑐𝑐

𝐴𝑓𝑓 𝐴𝑓𝑐
𝑣𝑓

𝑣𝑐
= 0 ⇒ 𝐴𝑓𝑓𝑣𝑓 = −𝐴𝑓𝑐𝑣𝑐

To do this reshuffling, 

igl::slice and 

igl::slice_into might 

become your best 

friend!
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Pre-factoring the bi-Laplacian

• Factorization is the bottleneck of the solve → O(n^3)!

• Prefactorization is crucial to achieve real-time 

performance

• Should only be performed when a new handle is defined

//PickingPlugin.h
Eigen::SimplicialCholesky<SparseMatrixType, Eigen::RowMajor > solver;  
solver.compute (BiLaplacian_ff); // the interior part of the (almost) bi-laplacian
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Deformation Transfer

paper

• Recall Multi-resolution:

• 𝑆 =  𝐵 +  𝑑: base + details

• 𝐵 → 𝐵′: deform base shape

• 𝑆′ = 𝐵′ + 𝑑′: add rotation-invariant displacement back

• Deformation transfer:

• 𝐵 → 𝐵′: already encodes the deformation

• Solve for 𝑆′ such that “the deformation from 𝑆 to 𝑆′” is 
equivalent to “the deformation from 𝐵 to 𝐵′” (Eq. (14) 
in the paper)
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https://lgg.epfl.ch/publications/2006/botsch_2006_DTD.pdf


Provided Code

• Enables basic picking and dragging of handles

• You will fill it in with your deformation code in 
Deformation class (deformation.cpp/h)

• Shortcuts:

• ’S’: select

• ’A’: accept selection

• ALT+’T’: translation, ALT+‘R’:  rotation
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Implementation Guidelines
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Deformation.h 

• No modification on the 
signature of any public 
member is allowed

• Minimize changes to 
main.cpp

• Changes on private 
members are allowed
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Implementation Guidelines
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Efficiency test example

• Why?

• Your implementation’s 
efficiency (and/or 
correctness) will be tested 
offline 
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Provided Code

//for saving constrained vertices
//vertex-to-handle index, #Vx1 (-1 if vertex is free)  
Eigen::VectorXi handle_id(0,1);
//list of all vertices belonging to handles, #HV x1  
Eigen::VectorXi handle_vertices(0,1);
//centroids of handle regions, #H x1  Eigen::MatrixXd 
handle_centroids(0,3);
//updated positions of handle vertices, #HV x3  
Eigen::MatrixXd handle_vertex_positions(0,3);

//index of handle being moved  int moving_handle = -1;

//rotation and translation for the handle being moved  
Eigen::Vector3f translation(0,0,0);
Eigen::Vector4f rotation(0,0,0,1.);
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• Picking infrastructure
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Provided Code

• While handle is being dragged

• Replace solve() with your code

void get_new_handle_locations()

updates all handle vertex positions  
based on rotation and translation

stores them in  
handle_vertex_positions

bool solve(igl::Viewer& viewer, bool update_constraints)
{
igl::slice_into(handle_vertex_positions, handle_vertices, 1, V);

/* etc. update variables*/  return true;
};
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• Turn on for easier debugging #define UPDATE_ONLY_ON_UP

Must be OFF during 

demo (want to see 

deformation while 
mouse moves)
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Questions?
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Thank you!
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