
Shape Modeling and Geometry Processing
Exercise 6 – Skeletal Animation

1May 17, 2024

How to represent rotations?

2

● : 3-by-3 matrix that satisfies

● Euler’s Angles: three angles to describe the orientation w.r.t. a
fixed coordinate system

● Axis-angle representation: unit vector (direction of an axis rotation)
+ an angle (the magnitude of the rotation about the axis)

● Unit length quaternions: 4-d vector

𝑅 ∈ 𝑆𝑂(3) 𝑅𝑇𝑅 = 𝐼

3D Rotation Representations

May 17, 2024 3

● Recall the complex numbers

● What’s the geometric interpretation of
multiplication by ?

z = a + bi, i2 = − 1

i

Complex Numbers for Rotations

4May 17, 2024

ℝ

iℝ

7

7i

−7

−7i

inz : rotate z by angle
π
2

n

● How do we rotate by ? θ Choose n =
2θ
π

how do we calculate ?it, t ∈ ℝ

Complex Numbers for Rotations

5May 17, 2024

ℝ

iℝ

7

7i

−7

−7i

But how do we calculate ?it, t ∈ ℝ

ex =
∞

∑
n=0

xn

n!

it = et log i

Convert the exponentiation basis and calculate

For a rotation by :θ

i
2θ
π = e

2θ
π log i = eiθ = cos θ + i sin θ

● Define quaternion:

Quaternions for 3D Rotations

6May 17, 2024

i2 = j2 = k2 = − 1
ij = k, jk = i, ki = jq = a + bi + cj + dk = a + ⃗v

iℝ

jℝ

kℝ
7i

7j

−7i

−7j

What does left multiplication by do?k

● Can we rotate by calculating ?qt ⃗v

ONLY if |q | = 1, q ⊥ ⃗v

● Define quaternion:

Quaternions for 3D Rotations

7May 17, 2024

i2 = j2 = k2 = − 1
ij = k, jk = i, ki = jq = a + bi + cj + dk = a + ⃗v

u = 0 + ⃗u , v = 0 + ⃗v

uv = − ⟨ ⃗u , ⃗v ⟩ + ⃗u × ⃗v

Their product satisfies:

Take two pure imaginary quaternions:

uv = (u1i + u2j + u3k)(v1i + v2j + v3k) =

−u1v1 − u2v2 − u3v3

−⟨ ⃗u , ⃗v ⟩

+ (u2v3 − u3v2)i + (u3v1 − u1v3)j + (u1v2 − u2v1)k

⃗u × ⃗v

● What happens if we sandwich v by u? (and)∥u∥ = 1

Quaternions for 3D Rotations

8May 17, 2024

u = 0 + ⃗u , v = 0 + ⃗v uv = − ⟨ ⃗u , ⃗v ⟩ + ⃗u × ⃗v

uvu = ⃗u × ⃗v × ⃗u − ⟨ ⃗u , ⃗v ⟩ ⃗u

= reflect(⃗v , ⃗u ⊥)

● How do we get a rotation
from this?

Just reflect again!

uvu = ⃗u × ⃗v × ⃗u
Proju⊥(v)

− ⟨ ⃗u , ⃗v ⟩ ⃗u

Proju(v)

Quaternions for 3D Rotations

9May 17, 2024

uvu = reflect(⃗v , ⃗u ⊥)

w(uvu)w = rotate(⃗v , ⃗u × ⃗w , 2∠ ⃗w , ⃗u)

q = cos θ + sin θ ⃗e

Rotate around by angle qvq̄ = ⃗v ⃗e 2θ

Define q = wu

q̄ = cos θ − sin θ ⃗e

● Both and represents the same 3D rotation.

● .

● Rotating about by and rotating about by will
give the same rotation, which corresponds to and .

●

● Plugging and yields the same

q −q

𝑞 = [cos
𝜃
2

, sin
𝜃
2

→𝑒]

⃗e θ − ⃗e 2π − θ
q −q

v′ = qvq̄
q −q v′

Double Cover

10May 17, 2024

How to represent transformations?

11

● Recall a rigid 3D transformation includes a rotation and a translation

●
For point define the homogenous coordinate

● Homogenous transformation representation

● We have , i.e., we use a matrix to represent a rigid

transformation in homogenous coordinates

R ∈ 𝕊𝕆(3)
𝑇 ∈ ℝ3

𝑣 =
𝑥
𝑦
𝑧

, �̂� =
𝑥
𝑦
𝑧
1

�̂� = (𝑅 𝑇
𝕆1×3 1) ∈ ℝ4×4

�̂��̂� = (𝑅𝑣 + 𝑇
1) 4 × 4

Matrix-Form Transformations

12May 17, 2024

● Define dual quaternion:

Dual Quaternion

13May 17, 2024

̂q = q1 + ϵq2 q1, q2 ∈ ℍ ϵ2 = 0

● Points are now represented as p = 1 + ϵ (x i + yj + zk) = 1 + ϵ ⃗v

ϵq = qϵ

qr pq̄r = qr(1 + ϵ ⃗v)q̄r = qrq̄r + ϵ (qr ⃗v q̄r) = 1 + ϵ (qr ⃗v q̄r)
● How do we translate?

● How do we rotate?

(1 + ϵ ⃗t) (1 + ϵ ⃗v) = 1 + ϵ (⃗t + ⃗v) + ϵ2 ⃗t ⃗v = 1 + ϵ (⃗t + ⃗v)

● Define dual quaternion:

Dual Quaternion

14May 17, 2024

̂q = q1 + ϵq2 q1, q2 ∈ ℍ ϵ2 = 0

● Points are now represented as p = 1 + ϵ (x i + yj + zk) = 1 + ϵ ⃗v

ϵq = qϵ

qr pq̄r = qr(1 + ϵ ⃗v)q̄r = qrq̄r + ϵ (qr ⃗v q̄r) = 1 + ϵ (qr ⃗v q̄r)
● How do we translate?

● How do we rotate?

(1 +
1
2

ϵ ⃗t) (1 + ϵ ⃗v) (1 +
1
2

ϵ ⃗t) = 1 + ϵ (⃗t + ⃗v)

● How do we represent rigid transformation?

Dual Quaternion

15May 17, 2024

qr pq̄r = 1 + ϵ (qr ⃗v q̄r) (1 +
1
2

ϵ ⃗t) (1 + ϵ ⃗v) (1 +
1
2

ϵ ⃗t) = 1 + ϵ (⃗t + ⃗v)

● Rotate by , translate by qr ⃗t

p′ = (1 +
ϵ
2

⃗t) qr pq̄r (1 +
ϵ
2

⃗t)
● Define

̂q = qr +
1
2

ϵ ⃗tqr p′ = ̂qp ̂q*

̂q* = q̄1 − ϵq̄2

How to interpolate rotations?

16

● Lerp: Linear Interpolation
𝑣𝑡 = Lerp(𝑣0, 𝑣1, 𝑡) = (1 − 𝑡)𝑣0 + 𝑡𝑣1

Lerp, NLerp, SLerp

17May 17, 2024

● Nlerp: Normalized Lerp
𝑞𝑡 = Lerp(𝑞0, 𝑞1, 𝑡)

𝑞′ 𝑡 =
𝑞𝑡

𝑞𝑡

Lerp, NLerp, SLerp

18May 17, 2024

● Slerp: Spherical Lerp

Lerp, NLerp, SLerp

19May 17, 2024

q0 q1

q0 (q−1
0 q1)

q0→q1

t
t ∈ [0,1]

= q0 exp(t log(q−1
0 q1))

Interpolation and Double Cover

20May 17, 2024

● Check if they are on the
same hemisphere before
interpolating!

Tasks in Assignment 6

21

● Understanding the problem and loading the
relevant data:
● The rest shape (.obj)
● The rigging (.skel: a graph)
● The handles for each bone (.dmat: a matrix)
● The rotations per reference frame (.dmat)
● The global position per frame (.dmat)

Task 1: input

22May 17, 2024

● Understand the different rotation representations

Task 2: Theory

Source of images: wikipedia

23May 17, 2024

● Move the rigging using forward kinematics

● Compute global rotations and translations
● For bone at frame

● Compute new position

R̂(l)
k

̂T(l)
k

k l

x(l)
k = R̂(l)

k xk + T(l)
k

Task 3: Skeletal animation

24May 17, 2024

Forward kinematics

25

The skeleton is not necessarily connected!

Forward kinematics

26

Forward kinematics

27

Forward kinematics

28

Forward kinematics

29

Forward kinematics

30

Task 3: Skeletal animation

31May 17, 2024

● Goal: weight the influence of each bones on
the mesh vertices

● Some have total influence (handles):
● 1- determine the handles
● 2- spread the weights via Laplace equation:

wk

wk(v) = 1

Task 4: Harmonic weight

Lwk = 0 subject to wk(v) = 1 ∀v ∈ Hk, wk(v) = 0 ∀v ∈ Hj where j ≠ k

32May 17, 2024

Task 4: Handle selection

33May 17, 2024

Task 4: Harmonic weight

34May 17, 2024

● For each bone, we know the rotation and

translation

● We apply them to the mesh according to the
harmonic weights

R(l)
k

T(l)
k

Task 5: Linear Blending Skinning

v(l)
i =

K

∑
k=1

wk(i)(R(l)
k v(0)

i + T (l)
k)

35May 17, 2024

Task 5: Linear Blending Skinning

36May 17, 2024

● Problem with LBS: weighted sum of rotations might not be a
rotation

● Idea: normalize the result to get a unit dual quaternion (NLERP)

● DO NOT directly use igl::dqs()
● Always check for if quaternions are on the same hemisphere.

Task 6: Dual Quaternion Skinning

q(l)
i =

∑K
k=1 wk(i)q(l)

k

∑K
k=1 wk(i)q(l)

k

37May 17, 2024

Task 6: Dual Quaternion Skinning

38May 17, 2024

● Goal: rotate the faces instead of the vertices

● 1- compute the weights for each face

● 2- use averaging to compute the new rotation

● 3- Solving: system is over-constrained. Poisson stiching.

● Rarely used in practice, but useful to see how powerful Poisson stiching.

hk(f) =
∑i∈𝒩f

wk(vi)

|Nf |

q̃(l)
f = arg max

q∈𝕊3
qT (

K

∑
k=1

hk(f)q(l)
k q(l)T

k) q

Task 7: Per-face linear Blending

G
v(l)

1
⋯
v(l)

n

=
R̃(l)

1
⋯
R̃(l)

m

, G ∈ ℝ3m×n is the gradient matrix

39May 17, 2024

Task 8: Context-aware deformation

● Problem with LBS: might result in unlikely
deformation

● Idea: use “reference animation”

● You are given a set of example deformations with
corresponding meshes and rotations

40May 17, 2024

Task 8: Context-aware deformation

● 1- Unpose the example shapes.

● 2- Compute the displacement

● 3- Apply the displacement to the animated shape

v̄j,i = T−1(Pj, wk(i))vj,i

δj,i = v̄j,i − v(0)
i

vi = T(P, wk(i)) v(0)
i +

J

∑
j=1

aj(P)δj,i

41May 17, 2024

Task 8: Context-aware deformation
● Computation of , the weight of the example pose to :

●

●

● is continuous w.r.t. the pose

● Choose a RBF function and find the corresponding such that

 —> solve the system corresponding to constraints

aj(P) jth P
J

∑
j=1

aj(P) = 1

∀j, aj(Pj) = 1, ∀i ≠ j aj(Pi) = 0
aj(P)

ϕ cj,t

aj(P) =
J

∑
t=1

cj,tϕ(∥P − Pt∥)

42May 17, 2024

Task 8: Context-aware deformation

Weber et al (2007),
Context-Aware Skeletal Shape Deformation

LBS

Context-aware

43May 17, 2024

Thank You

44
May 17, 2024

