
Shape Modeling and Geometry Processing 
Exercise 6 – Skeletal Animation
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How to represent rotations?
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● : 3-by-3 matrix that satisfies  

● Euler’s Angles: three angles to describe the orientation w.r.t. a 
fixed coordinate system 

● Axis-angle representation: unit vector (direction of an axis rotation) 
+ an angle (the magnitude of the rotation about the axis) 

● Unit length quaternions: 4-d vector

𝑅 ∈ 𝑆𝑂(3) 𝑅𝑇𝑅 = 𝐼

3D Rotation Representations
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● Recall the complex numbers  
 

● What’s the geometric interpretation of 
multiplication by ?

z = a + bi, i2 = − 1

i

Complex Numbers for Rotations
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ℝ

iℝ

7

7i

−7

−7i

inz : rotate z by angle 
π
2

n

● How do we rotate by  ? θ Choose n =
2θ
π

how do we calculate ?it, t ∈ ℝ



Complex Numbers for Rotations
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ℝ

iℝ

7

7i

−7

−7i

But how do we calculate ?it, t ∈ ℝ

ex =
∞

∑
n=0

xn

n!

it = et log i

Convert the exponentiation basis and calculate

For a rotation by :θ

i
2θ
π = e

2θ
π log i = eiθ = cos θ + i sin θ



● Define quaternion:

Quaternions for 3D Rotations
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i2 = j2 = k2 = − 1
ij = k, jk = i, ki = jq = a + bi + cj + dk = a + ⃗v

iℝ

jℝ

kℝ
7i

7j

−7i

−7j

What does left multiplication by  do?k

● Can we rotate by calculating ?qt ⃗v

ONLY if |q | = 1, q ⊥ ⃗v



● Define quaternion:

Quaternions for 3D Rotations
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i2 = j2 = k2 = − 1
ij = k, jk = i, ki = jq = a + bi + cj + dk = a + ⃗v

u = 0 + ⃗u , v = 0 + ⃗v

uv = − ⟨ ⃗u , ⃗v ⟩ + ⃗u × ⃗v

Their product satisfies:

Take two pure imaginary quaternions:

uv = (u1i + u2j + u3k)(v1i + v2j + v3k) =

−u1v1 − u2v2 − u3v3

−⟨ ⃗u , ⃗v ⟩

+ (u2v3 − u3v2)i + (u3v1 − u1v3)j + (u1v2 − u2v1)k

⃗u × ⃗v



● What happens if we sandwich v by u? (and )∥u∥ = 1

Quaternions for 3D Rotations
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u = 0 + ⃗u , v = 0 + ⃗v uv = − ⟨ ⃗u , ⃗v ⟩ + ⃗u × ⃗v

uvu = ⃗u × ⃗v × ⃗u − ⟨ ⃗u , ⃗v ⟩ ⃗u

= reflect( ⃗v , ⃗u ⊥)

● How do we get a rotation 
from this?

Just reflect again!

uvu = ⃗u × ⃗v × ⃗u
Proju⊥(v)

− ⟨ ⃗u , ⃗v ⟩ ⃗u

Proju(v)



Quaternions for 3D Rotations
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uvu = reflect( ⃗v , ⃗u ⊥)

w(uvu)w = rotate( ⃗v , ⃗u × ⃗w , 2∠ ⃗w , ⃗u )

q = cos θ + sin θ ⃗e

Rotate  around  by angle qvq̄ = ⃗v ⃗e 2θ

Define q = wu

q̄ = cos θ − sin θ ⃗e



● Both  and  represents the same 3D rotation. 

● .  

● Rotating about  by  and rotating about  by  will 
give the same rotation, which corresponds to  and . 

●  

● Plugging  and  yields the same 

q −q

𝑞 = [cos
𝜃
2

, sin
𝜃
2

→𝑒 ]

⃗e θ − ⃗e 2π − θ
q −q

v′ = qvq̄
q −q v′ 

Double Cover
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How to represent transformations?
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● Recall a rigid 3D transformation includes a rotation  and a translation 
  

●
For point  define the homogenous coordinate  

● Homogenous transformation representation 

● We have , i.e., we use a  matrix to represent a rigid 

transformation in homogenous coordinates

R ∈ 𝕊𝕆(3)
𝑇 ∈ ℝ3

𝑣 =
𝑥
𝑦
𝑧

, �̂� =
𝑥
𝑦
𝑧
1

�̂� = ( 𝑅 𝑇
𝕆1×3 1) ∈ ℝ4×4

�̂��̂� = (𝑅𝑣 + 𝑇
1 ) 4 × 4

Matrix-Form Transformations
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● Define dual quaternion:

Dual Quaternion
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̂q = q1 + ϵq2 q1, q2 ∈ ℍ ϵ2 = 0

● Points are now represented as p = 1 + ϵ (x i + yj + zk) = 1 + ϵ ⃗v

ϵq = qϵ

qr pq̄r = qr(1 + ϵ ⃗v )q̄r = qrq̄r + ϵ (qr ⃗v q̄r) = 1 + ϵ (qr ⃗v q̄r)
● How do we translate?

● How do we rotate?

(1 + ϵ ⃗t ) (1 + ϵ ⃗v ) = 1 + ϵ ( ⃗t + ⃗v ) + ϵ2 ⃗t ⃗v = 1 + ϵ ( ⃗t + ⃗v )



● Define dual quaternion:

Dual Quaternion
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̂q = q1 + ϵq2 q1, q2 ∈ ℍ ϵ2 = 0

● Points are now represented as p = 1 + ϵ (x i + yj + zk) = 1 + ϵ ⃗v

ϵq = qϵ

qr pq̄r = qr(1 + ϵ ⃗v )q̄r = qrq̄r + ϵ (qr ⃗v q̄r) = 1 + ϵ (qr ⃗v q̄r)
● How do we translate?

● How do we rotate?

(1 +
1
2

ϵ ⃗t) (1 + ϵ ⃗v ) (1 +
1
2

ϵ ⃗t) = 1 + ϵ ( ⃗t + ⃗v )



● How do we represent rigid transformation?

Dual Quaternion
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qr pq̄r = 1 + ϵ (qr ⃗v q̄r) (1 +
1
2

ϵ ⃗t) (1 + ϵ ⃗v ) (1 +
1
2

ϵ ⃗t) = 1 + ϵ ( ⃗t + ⃗v )

● Rotate by , translate by qr ⃗t

p′ = (1 +
ϵ
2

⃗t) qr pq̄r (1 +
ϵ
2

⃗t)
● Define

̂q = qr +
1
2

ϵ ⃗tqr p′ = ̂qp ̂q*

̂q* = q̄1 − ϵq̄2



How to interpolate rotations?
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● Lerp: Linear Interpolation 
𝑣𝑡 = Lerp(𝑣0, 𝑣1, 𝑡) = (1 − 𝑡)𝑣0 + 𝑡𝑣1 

Lerp, NLerp, SLerp
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● Nlerp: Normalized Lerp 
𝑞𝑡 = Lerp(𝑞0, 𝑞1, 𝑡)

𝑞′ 𝑡 =
𝑞𝑡

𝑞𝑡

Lerp, NLerp, SLerp
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● Slerp: Spherical Lerp

Lerp, NLerp, SLerp
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q0 q1

q0 (q−1
0 q1)

q0→q1

t
t ∈ [0,1]

= q0 exp(t log(q−1
0 q1))



Interpolation and Double Cover
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● Check if they are on the 
same hemisphere before 
interpolating!



Tasks in Assignment 6
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● Understanding the problem and loading the 
relevant data: 
● The rest shape (.obj) 
● The rigging (.skel: a graph) 
● The handles for each bone (.dmat: a matrix) 
● The rotations per reference frame (.dmat) 
● The global position per frame (.dmat)

Task 1: input
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● Understand the different rotation representations

Task 2: Theory

Source of images: wikipedia
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● Move the rigging using forward kinematics 

● Compute global rotations  and translations   
● For bone  at frame  

 

● Compute new position 

R̂(l)
k

̂T(l)
k

k l

x(l)
k = R̂(l)

k xk + T(l)
k

Task 3: Skeletal animation
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Forward kinematics
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The skeleton is not necessarily connected!



Forward kinematics
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Forward kinematics
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Forward kinematics
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Forward kinematics
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Forward kinematics
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Task 3: Skeletal animation
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● Goal: weight the influence  of each bones on 
the mesh vertices 

● Some have total influence (handles):  
● 1- determine the handles 
● 2- spread the weights via Laplace equation:

wk

wk(v) = 1

Task 4: Harmonic weight

Lwk = 0 subject to wk(v) = 1 ∀v ∈ Hk, wk(v) = 0 ∀v ∈ Hj where j ≠ k
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Task 4: Handle selection
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Task 4: Harmonic weight
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● For each bone, we know the rotation  and 

translation  

● We apply them to the mesh according to the 
harmonic weights

R(l)
k

T(l)
k

Task 5: Linear Blending Skinning

v(l)
i =

K

∑
k=1

wk(i)(R(l)
k v(0)

i + T (l)
k )
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Task 5: Linear Blending Skinning
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● Problem with LBS: weighted sum of rotations might not be a 
rotation 

● Idea: normalize the result to get a unit dual quaternion (NLERP) 

● DO NOT directly use igl::dqs() 
● Always check for if quaternions are on the same hemisphere.

Task 6: Dual Quaternion Skinning

q(l)
i =

∑K
k=1 wk(i)q(l)

k

∑K
k=1 wk(i)q(l)

k
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Task 6: Dual Quaternion Skinning
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● Goal: rotate the faces instead of the vertices 

● 1- compute the weights  for each face 

● 2- use averaging to compute the new rotation 

 

● 3- Solving: system is over-constrained. Poisson stiching. 

● Rarely used in practice, but useful to see how powerful Poisson stiching.

hk( f ) =
∑i∈𝒩f

wk(vi)

|Nf |

q̃(l)
f = arg max

q∈𝕊3
qT (

K

∑
k=1

hk( f )q(l)
k q(l)T

k ) q

Task 7: Per-face linear Blending

G
v(l)

1
⋯
v(l)

n

=
R̃(l)

1
⋯
R̃(l)

m

, G ∈ ℝ3m×n is the gradient matrix
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Task 8: Context-aware deformation

● Problem with LBS: might result in unlikely 
deformation 

● Idea: use “reference animation” 

● You are given a set of example deformations with 
corresponding meshes and rotations
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Task 8: Context-aware deformation

● 1- Unpose the example shapes. 

● 2- Compute the displacement 

● 3- Apply the displacement to the animated shape

v̄j,i = T−1(Pj, wk(i))vj,i

δj,i = v̄j,i − v(0)
i

vi = T(P, wk(i)) v(0)
i +

J

∑
j=1

aj(P)δj,i
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Task 8: Context-aware deformation
● Computation of , the weight of the  example pose to : 

●
 

●  

●  is continuous w.r.t. the pose 

● Choose a RBF function  and find the corresponding  such that

 —> solve the system corresponding to constraints

aj(P) jth P
J

∑
j=1

aj(P) = 1

∀j, aj(Pj) = 1, ∀i ≠ j aj(Pi) = 0
aj(P)

ϕ cj,t

aj(P) =
J

∑
t=1

cj,tϕ(∥P − Pt∥)
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Task 8: Context-aware deformation

Weber et al (2007), 
Context-Aware Skeletal Shape Deformation

LBS

Context-aware
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Thank You
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