Shape Modeling and Geometry Processing Exercise 6 - Skeletal Animation

May 17, 2024

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

ЕТН

How to represent rotations?

3D Rotation Representations

- $R \in SO(3)$: 3-by-3 matrix that satisfies $R^T R = I$
- Euler's Angles: three angles to describe the orientation w.r.t. a fixed coordinate system
- Axis-angle representation: unit vector (direction of an axis rotation)
 + an angle (the magnitude of the rotation about the axis)
- Unit length quaternions: 4-d vector

Complex Numbers for Rotations

- Recall the complex numbers z = a + bi, $i^2 = -1$
- What's the geometric interpretation of multiplication by *i*?

$$i^n z$$
 : rotate z by angle $\frac{\pi}{2}n$

• How do we rotate by θ ? Choose $n = \frac{2\theta}{\pi}$

how do we calculate i^t , $t \in \mathbb{R}$?

Complex Numbers for Rotations

But how do we calculate i^t , $t \in \mathbb{R}$?

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$

Convert the exponentiation basis and calculate

 $i^t = e^{t \log i}$

For a rotation by θ :

$$i^{\frac{2\theta}{\pi}} = e^{\frac{2\theta}{\pi}\log i} = e^{i\theta} = \cos\theta + i\sin\theta$$

• Define quaternion:

$$q = a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k} = a + \overrightarrow{v}$$

$$i^{2} = j^{2} = k^{2} = -1$$

 $ij = k$, $jk = i$, $ki = j$

Take two pure imaginary quaternions:

 $u = 0 + \overrightarrow{u}, \quad v = 0 + \overrightarrow{v}$

Their product satisfies:

$$uv = -\langle \overrightarrow{u}, \overrightarrow{v} \rangle + \overrightarrow{u} \times \overrightarrow{v}$$

$$uv = (u_1\mathbf{i} + u_2\mathbf{j} + u_3\mathbf{k})(v_1\mathbf{i} + v_2\mathbf{j} + v_3\mathbf{k}) =$$

$$\underbrace{-u_1v_1 - u_2v_2 - u_3v_3}_{-\langle \vec{u}, \vec{v} \rangle} + \underbrace{(u_2v_3 - u_3v_2)\mathbf{i} + (u_3v_1 - u_1v_3)\mathbf{j} + (u_1v_2 - u_2v_1)\mathbf{k}}_{\vec{u} \times \vec{v}}$$

May 17, 2024

$$u = 0 + \overrightarrow{u}, v = 0 + \overrightarrow{v} \qquad uv = -\langle \overrightarrow{u}, \overrightarrow{v} \rangle + \overrightarrow{u} \times \overrightarrow{v}$$

• What happens if we sandwich v by u? (and ||u|| = 1)

$$uvu = \underbrace{\overrightarrow{u} \times \overrightarrow{v} \times \overrightarrow{u}}_{Proj_{u^{\perp}}(v)} - \underbrace{\langle \overrightarrow{u}, \overrightarrow{v} \rangle \overrightarrow{u}}_{Proj_{u}(v)}$$
$$= \operatorname{reflect}(\overrightarrow{v}, \overrightarrow{u^{\perp}})$$

 How do we get a rotation from this?

Just reflect again!

$$uvu = \operatorname{reflect}(\overrightarrow{v}, \overrightarrow{u}^{\perp})$$

$$w(uvu)w = \operatorname{rotate}(\overrightarrow{v}, \overrightarrow{u} \times \overrightarrow{w}, 2\angle \overrightarrow{w}, \overrightarrow{u})$$

Define $q = wu$

$$q = \cos \theta + \sin \theta \overrightarrow{e} \quad \overline{q} = \cos \theta - \sin \theta \overrightarrow{e}$$

$$qv\overline{q} = \operatorname{Rotate} \overrightarrow{v} \text{ around } \overrightarrow{e} \text{ by angle } 2\theta$$

Double Cover

• Both q and -q represents the same 3D rotation.

•
$$q = [\cos\frac{\theta}{2}, \sin\frac{\theta}{2}\vec{e}].$$

• Rotating about \overrightarrow{e} by θ and rotating about $-\overrightarrow{e}$ by $2\pi - \theta$ will give the same rotation, which corresponds to q and -q.

•
$$v' = qv\bar{q}$$

• Plugging q and -q yields the same v'

How to represent transformations?

Matrix-Form Transformations

• Recall a rigid 3D transformation includes a rotation $R \in SO(3)$ and a translation $T \in \mathbb{R}^3$

For point
$$v = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
, define the homogenous coordinate $\hat{v} = \begin{pmatrix} x \\ y \\ z \\ 1 \end{pmatrix}$

Homogenous transformation representation

• We have $\hat{R}\hat{v} = \begin{pmatrix} Rv + T \\ 1 \end{pmatrix}$, i.e., we use a 4×4 matrix to represent a rigid transformation in homogenous coordinates

 $\hat{R} = \begin{pmatrix} R & T \\ \mathbb{O}_{1 \times 3} & 1 \end{pmatrix} \in \mathbb{R}^{4 \times 4}$

Dual Quaternion

- Define dual quaternion:
 - $\hat{q} = q_1 + \epsilon q_2 \qquad q_1, q_2 \in \mathbb{H} \qquad \epsilon^2 = 0 \qquad \epsilon q = q\epsilon$
 - Points are now represented as $p = 1 + \epsilon (x\mathbf{i} + y\mathbf{j} + z\mathbf{k}) = 1 + \epsilon \vec{v}$
 - How do we rotate?

$$q_r p \bar{q}_r = q_r (1 + \epsilon \vec{v}) \bar{q}_r = q_r \bar{q}_r + \epsilon \left(q_r \vec{v} \bar{q}_r \right) = 1 + \epsilon \left(q_r \vec{v} \bar{q}_r \right)$$

• How do we translate?

$$(1 + \epsilon \vec{t}) (1 + \epsilon \vec{v}) = 1 + \epsilon (\vec{t} + \vec{v}) + \epsilon^2 \vec{t} \vec{v} = 1 + \epsilon (\vec{t} + \vec{v})$$

Dual Quaternion

- Define dual quaternion:
 - $\hat{q} = q_1 + \epsilon q_2 \qquad q_1, q_2 \in \mathbb{H} \qquad \epsilon^2 = 0 \qquad \epsilon q = q \epsilon$
 - Points are now represented as $p = 1 + \epsilon (x\mathbf{i} + y\mathbf{j} + z\mathbf{k}) = 1 + \epsilon \vec{v}$
 - How do we rotate?

$$q_r p \bar{q}_r = q_r (1 + \epsilon \vec{v}) \bar{q}_r = q_r \bar{q}_r + \epsilon \left(q_r \vec{v} \bar{q}_r \right) = 1 + \epsilon \left(q_r \vec{v} \bar{q}_r \right)$$

• How do we translate?

$$\left(1 + \frac{1}{2}\epsilon\vec{t}\right)\left(1 + \epsilon\vec{v}\right)\left(1 + \frac{1}{2}\epsilon\vec{t}\right) = 1 + \epsilon\left(\vec{t} + \vec{v}\right)$$

Dual Quaternion

• How do we represent rigid transformation?

$$q_r p \bar{q}_r = 1 + \epsilon \left(q_r \overrightarrow{v} \bar{q}_r \right) \qquad \left(1 + \frac{1}{2} \epsilon \vec{t} \right) \left(1 + \epsilon \vec{v} \right) \left(1 + \frac{1}{2} \epsilon \vec{t} \right) = 1 + \epsilon \left(\vec{t} + \vec{v} \right)$$

• Rotate by q_r , translate by \vec{t}

$$p' = \left(1 + \frac{\epsilon}{2}\vec{t}\right)q_r p\bar{q}_r \left(1 + \frac{\epsilon}{2}\vec{t}\right)$$

• Define

$$\hat{q} = q_r + \frac{1}{2}\epsilon \vec{t}q_r \qquad p' = \hat{q}p\hat{q}^*$$

$$\hat{q}^* = \bar{q}_1 - \epsilon \bar{q}_2$$

How to interpolate rotations?

Lerp, NLerp, SLerp

- Lerp: Linear Interpolation
- $v_t = \text{Lerp}(v_0, v_1, t) = (1 t)v_0 + tv_1$

Lerp, NLerp, SLerp

• Nlerp: Normalized Lerp $q_t = \text{Lerp}(q_0, q_1, t)$ $q'_t = \frac{q_t}{\|q_t\|}$

Lerp, NLerp, SLerp

19

'Q'

Interpolation and Double Cover

 Check if they are on the same hemisphere before interpolating!

20

May 17, 2024

Tasks in Assignment 6

Task 1: input

- Understanding the problem and loading the relevant data:
 - The rest shape (.obj)
 - The rigging (.skel: a graph)
 - The handles for each bone (.dmat: a matrix)
 - The rotations per reference frame (.dmat)
 - The global position per frame (.dmat)

Task 2: Theory

Understand the different rotation representations

Source of images: wikipedia

Task 3: Skeletal animation

- Move the rigging using forward kinematics
- Compute global rotations $\hat{R}_k^{(l)}$ and translations $\hat{T}_k^{(l)}$
 - For bone k at frame l

• Compute new position $x_k^{(l)} = \hat{R}_k^{(l)} x_k + T_k^{(l)}$

The skeleton is not necessarily connected!

ETH zürich

ETH zürich

Task 3: Skeletal animation

Igl

Task 4: Harmonic weight

- Goal: weight the influence w_k of each bones on the mesh vertices
- Some have total influence (handles): $w_k(v) = 1$
- 1- determine the handles
- 2- spread the weights via Laplace equation:

 $Lw_k = 0$ subject to $w_k(v) = 1 \forall v \in H_k, w_k(v) = 0 \forall v \in H_j$ where $j \neq k$

Task 4: Handle selection

ıgl

May 17, 2024

Task 4: Harmonic weight

May 17, 2024

Task 5: Linear Blending Skinning

- For each bone, we know the rotation $R_k^{(l)}$ and translation $T_k^{(l)}$
- We apply them to the mesh according to the harmonic weights

$$v_i^{(l)} = \sum_{k=1}^K w_k(i) \left(R_k^{(l)} v_i^{(0)} + T_k^{(l)} \right)$$

Task 5: Linear Blending Skinning

١Q١

Task 6: Dual Quaternion Skinning

- Problem with LBS: weighted sum of rotations might not be a rotation
- Idea: normalize the result to get a unit dual quaternion (NLERP)

$$q_i^{(l)} = \frac{\sum_{k=1}^K w_k(i) q_k^{(l)}}{\left\| \sum_{k=1}^K w_k(i) q_k^{(l)} \right\|}$$

- DO NOT directly use igl::dqs()
- Always check for if quaternions are on the same hemisphere.

Task 6: Dual Quaternion Skinning

١Q١

Task 7: Per-face linear Blending

- Goal: rotate the faces instead of the vertices
- 1- compute the weights $h_k(f) = \frac{\sum_{i \in \mathcal{N}_f} w_k(v_i)}{|N_f|}$ for each face
- 2- use averaging to compute the new rotation $\tilde{q}_{f}^{(l)} = \arg \max_{q \in \mathbb{S}^{3}} q^{T} \left(\sum_{k=1}^{K} h_{k}(f) q_{k}^{(l)} q_{k}^{(l)T} \right) q$
- 3- Solving: system is over-constrained. Poisson stiching.

$$G \begin{pmatrix} v_1^{(l)} \\ \cdots \\ v_n^{(l)} \end{pmatrix} = \begin{pmatrix} \tilde{R}_1^{(l)} \\ \cdots \\ \tilde{R}_m^{(l)} \end{pmatrix}, G \in \mathbb{R}^{3m \times n} \text{ is the gradient matrix}$$

• Rarely used in practice, but useful to see how powerful Poisson stiching.

Problem with LBS: might result in unlikely deformation

Idea: use "reference animation"

 You are given a set of example deformations with corresponding meshes and rotations

• 1- Unpose the example shapes.

 $\bar{v}_{j,i} = T^{-1} \big(P_j, w_k(i) \big) v_{j,i}$

• 2- Compute the displacement

$$\delta_{j,i} = \bar{v}_{j,i} - v_i^{(0)}$$

• 3- Apply the displacement to the animated shape $v_i = T(P, w_k(i)) \left(v_i^{(0)} + \sum_{j=1}^J a_j(P) \delta_{j,i} \right)$

- Computation of $a_i(P)$, the weight of the j^{th} example pose to P:
 - $\sum_{j=1}^{J} a_j(P) = 1$ • $\forall j, a_i(P_i) = 1, \ \forall i \neq j \ a_i(P_i) = 0$
 - $a_i(P)$ is continuous w.r.t. the pose
- Choose a RBF function ϕ and find the corresponding $c_{j,t}$ such that $a_j(P) = \sum_{t=1}^J c_{j,t} \phi(\|P - P_t\|) \rightarrow \text{solve the system corresponding to constraints}$

Weber et al (2007), Context-Aware Skeletal Shape Deformation

Thank You

44

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

May 17, 2024