- publication
- EUROGRAPHICS 2012
- authors
- Daniele Panozzo, Ofir Weber, Olga Sorkine-Hornung
abstract
We propose the space of axis-aligned deformations as the meaningful space for content-aware image retargeting. Such deformations exclude local rotations, avoiding harmful visual distortions, and they are parameterized in 1D. We show that standard warping energies for image retargeting can be minimized in the space of axis-aligned deformations while guaranteeing that bijectivity constraints are satisfied, leading to high-quality, smooth and robust retargeting results. Thanks to the 1D parameterization, our method only requires solving a small quadratic program, which can be done within a few milliseconds on the CPU with no precomputation overhead. We demonstrate how the image size and the saliency map can be changed in real time with our approach, and present results on various input images, including the RetargetMe benchmark. We compare our results with six other algorithms in a user study to demonstrate that the space of axis-aligned deformations is suitable for the problem at hand.
downloads
- Paper (EUROGRAPHICS 2012, official version available at http://diglib.eg.org/)
- BibTex entry
- Video
- Demo software, Windows and Mac OS X
- Source of Demo Software, Windows and Mac OS X
- User study data (MySQL database of collected anonymized results and detailed writeup of their analysis)
- Results comparisons with existing methods on the RetargetMe benchmark.
accompanying video
acknowledgments
We are grateful to all the volunteer participants of our user study, to Jacob Mattingley for the CVXGEN solver and to Susana Castillo for the support in the generation of the user-study statistics. This work was supported in part by the NSF award IIS-0905502.