- publication
- ACM SIGGRAPH 2016
- demo
- UIST 2016 Demo Session
- authors
- Oliver Glauser, Alex (Wan-Chun) Ma, Daniele Panozzo, Alec Jacobson, Otmar Hilliges, Olga Sorkine-Hornung
abstract
We propose a novel approach to digital character animation, combining the benefits of tangible input devices and sophisticated rig animation algorithms. A symbiotic software and hardware approach facilitates the animation process for novice and expert users alike. We overcome limitations inherent to all previous tangible devices by allowing users to directly control complex rigs using only a small set (5-10) of physical controls. This avoids oversimplification of the pose space and excessively bulky device configurations. Our algorithm derives a small device configuration from complex character rigs, often containing hundreds of degrees of freedom, and a set of sparse sample poses. Importantly, only the most influential degrees of freedom are controlled directly, yet detailed motion is preserved based on a pose interpolation technique. We designed a modular collection of joints and splitters, which can be assembled to represent a wide variety of skeletons. Each joint piece combines a universal joint and two twisting elements, allowing to accurately sense its configuration. The mechanical design provides a smooth inverse kinematics-like user experience and is not prone to gimbal locking. We integrate our method with the professional 3D software Autodesk Maya® and discuss a variety of results created with characters available online. Comparative user experiments show significant improvements over the closest state-of-the-art in terms of accuracy and time in a keyframe posing task.
downloads
- Paper (ACM SIGGRAPH 2016, official version available at http://portal.acm.org/)
- Video
- Demo Session at UIST 2016
- Open Hardware + Software on Github
- BibTex entry
accompanying video
acknowledgments
We are grateful to Cédric Pradalier and Evgeni Sorkine for invaluable discussions and engineering support, to Sebastian Schoellhammer for his assistance on 3D modeling and rigging in Maya, to Olga Diamanti for composing the accompanying video, to Cécile Edwards-Rietmann for narrating it and to Jeannine Wymann for her help in assembling the prototypes. We also thank our user study participants. This work was supported in part by the SNF grant 200021 162958 and the ERC grant iModel (StG-2012-306877). Alec Jacobson is funded in part by NSF grants IIS-14-09286 and IIS-17257.